I am not going to write much about the properties of the Mersenne primes, it is easy to find this information on the net. What I want is to write why those primes are interesting to me and perhaps I will manage to interest you as well.
Firstly, it was proven by Euclid that all the numbers of the form
Secondly, there is a project on the internet whose goal is to find large Mersenne primes. This project is a typical example of distributed computer network - you download their program, and it uses your computer idle cycles to try and factor numbers produced by the formula. They even have a prize offered, but it is pointless to participate only to try and win the prize in my opinion. The last prime they found was found in 2006... However if you want to put your computer idle cycles to some use, this is the place to go to. Since my computer is now staying idle most of the time so I am starting to consider this use.
Thirdly, there is an interesting theorem which happens to concern them. This theorem (proven by Gauss) says that it is possible to divide a circle into p equal segments using square roots (that is, only square roots are required to find the solution - points in a plane), only and only if p is a Merssene prime. To be precise, Gauss grooved only one part of this theorem - he showed that if p is Merssene prime than the construction is possible. The second part was proofed latter. From this we see that there is also a connection between these primes and geometry.
I am sure it is possible to think about more interesting properties of Mersenne primes, but those are the properties I know about and find interesting. What do you find interesting in them?
No comments:
Post a Comment